If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+20x+2=0
a = 10; b = 20; c = +2;
Δ = b2-4ac
Δ = 202-4·10·2
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{5}}{2*10}=\frac{-20-8\sqrt{5}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{5}}{2*10}=\frac{-20+8\sqrt{5}}{20} $
| 6x+4+2x=3+9x-10 | | 2x(x+3)-7=2x^2-(-6x+7) | | -7(y+5)=8y+25 | | 7u+17=5(u+1) | | 2(y+6)=5y-18 | | 6(5-x)-(2-4x)=21 | | x^2-4.5x+3=0 | | 7(x-3)-16x=-9(x-1) | | (3x-18)/3=21 | | 5x-7=4x=6x | | x*x-3x-88=0 | | 2x+5=3(x+8) | | 8x^2−3x=0 | | 3x-2x+15=5x-7x | | 1/4x-5=1/3x+2 | | %0f10=5 | | 7(x-3)-16x=9(x-1) | | 1/4x=1/3x+7 | | 9(x^2)^2-10x^2-639=0 | | 8x+16+9x+17=19x+5 | | 9x+11=8(x+5) | | (3x-2)=(2x-5) | | -2y-3y+8=8-5y-121 | | 3x+20+5x-8=9x+1 | | -3y-7=5y+9 | | 15x-8=6x+37 | | 9x^2-10x-639=0 | | 14+x+1=3x-19 | | 7x+5=5+3x+26 | | 9x^2-10x-79=0 | | -24+5y=2y-6 | | -7(x-7)+4=53 |